您的位置 首页 百科问答

连通和

连通和 在数学里,尤其是在拓扑学里,连通和的运算是指一于流形上的几何改变。其效果为将两个给定的流形于各个选定的点附近连接起来。此一建构在闭曲面分类上有着关键性的…

连通和

在数学里,尤其是在拓扑学里,连通和的运算是指一于流形上的几何改变。其效果为将两个给定的流形于各个选定的点附近连接起来。此一建构在闭曲面分类上有着关键性的角色。更一般地,也可以将流形和其子流形连接起来;此一广义化通常称为纤维和。另外还有在结上之连通和的一相关概念,其称为结和或结的复合。

点上的连通和

两个m维流形的连通和为一流形,其将两个流形各挖去一个球,再将球面边界黏在一起。

若两个流形是可定向的,由逆转定向黏合映射定义的连通和是惟一的。即使这建构使用到的球的选择,但最后结果都会于同胚下统一。亦可以将此运算作用于光滑范畴上,而其结果也会于微分同胚下统一。

连通和的运算标记为#;例如,即表示为A和B的连通和。

连通和的运算中有一球面S为单位元;亦即,会同胚(或导数同构)于M。

闭球面的分类,在拓扑学上的一基本及重大结果,其描述为:任一闭曲面均可表示成g个环面和k个实射影平面的连通和。

子空间内定义

设和为两个光滑、可定向且相同维度的流形,及V为一光滑、封闭且可定向的流形,可内嵌成和的子流形。此外,再假设其存在一法丛的同构

其将每一纤维的定向颠倒。然后,ψ便可导出一定向保留的导数同构

其中,每一法丛都会微分同构地和于内V的邻域一致,且映射

参考资料 >

版权声明:幕实号所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,不声明或保证其内容的正确性,如发现本站有涉嫌抄袭侵权/违法违规的内容。请发送邮件至730200231@qq.com 举报,一经查实,本站将立刻删除

为您推荐

联系我们

联系我们

13611175751

Q Q: 730202031

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部